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RNNSs as tools to understand computations

Dynamics as computations
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Individual brain regions are able to support computations required for

multiple tasks
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Classical single-task RNN structure
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Perceptual decision making task
Single-task trained RNN
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Perceptual decision making task
Single-task trained RNN

PC 2
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Perceptual decision making task
Single-task trained RNN
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Multisensory integration task
Single-task trained RNN  stimulus. mod2
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Distances between fixed points of the two tasks
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Distances between fixed points of the two tasks
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Multi-task trained RNN
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Evolution of fixed points of task 1 during training of task 2

fast collapse of fixed points
for task 1
during training of
task 2
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Low-dimensional representation of task 2
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Performance of task 1 after task 2 drops

trajectories of task 1 get
mixed for both stimulus
conditions
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Mixed selective pathway slows down FP forgetting
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Representations of task 1 after training task 2
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Representation of task 1 for a=0
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Representation of task 1 for a=0
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Comparing PC subspaces
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Comparing PC subspaces

Cosine similarities for output constraint: 1
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Comparing PC subspaces

Cosine similarities for output constraint: 2
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Communication subspace through reduced rank regression
Predict ACC from V1 (V1-> ACC)
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Communication subspace through reduced rank regression

Predict V1 from ACC (ACC-> V1)
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Reduced rank regression predicts low-dimensional feedback from ACC to V1
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Summary

e reduced rank regression predicted high dimensional input fr
and low-dimensional input from ACC to V1

« Attempts to fit Generalised Linear modelssto p
responses were not particularly fruitful

lation

e Simultaneous recordings from V1
performace of the GL

o

C axons may improve the




